МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Филиал ДГУ в г. Хасавюрте

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ СОО.01.05 ФИЗИКА

Специальность:

по программе подготовки специалистов среднего звена (ППССЗ) среднего профессионального образования

Специальность:	38.02.01 Экономика и бухгалтерский учет (по отраслям)
Обучение:	по программе базовой подготовке
Уровень образования, на базе которого осваивается ППСС3:	основное общее образование
Квалификация:	бухгалтер
Форма обучения:	очная, заочная

Махачкала 2025

Рабочая программа дисциплины «Физика» разработана 2025г на основе требований ФГОС СПО по специальности 38.02.01 «Экономика и Бухгалтерский учёт» от 24.06.2024 г. № 437 для реализации основной профессиональной образовательной программы СПО

Разработчик:

Абдулхаликов Э.М., преподаватель кафедры ОиПД

Рабочая программа дисциплины рассмотрена и рекомендована к утверждению на заседании предметной (цикловой) комиссии: кафедра ОиПД

Протокол №5 от 27.01.2025 г.

Председатель Камилова Р.Ш.

(подпись)

Рабочая программа дисциплины согласована с учебно-методическим управлением

30.01.2025 г

(подпись)

СОДЕРЖАНИЕ

Стр.

- 1. Пояснительная записка
- 2. Общая характеристика учебной дисциплины
- 3. Место учебной дисциплины в учебном плане
- 4. Результаты освоения учебной дисциплины
- 5. Содержание учебной дисциплины
- 6. Тематическое планирование
- 7. Учебно-методическое и материально-техническое обеспечение программы учебной дисциплины
- 8. Рекомендуемая литература

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

СОО.01.05 ФИЗИКА

1.1. Область применения программы

Рабочая программа дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 38.02.01 Экономика и бухгалтерский учет для очного обучения студентов, имеющих основное общее образование, по программе базовой подготовки.

Рабочие программы дисциплин, адаптированные для обучения лиц с ограниченными возможностями здоровью, разрабатываются с учетом конкретных ограничений здоровья лиц, зачисленных в колледж, и утверждается в установленном порядке.

1.2. Цели и задачи дисциплины – требования к результатам освоения дисциплины Содержание программы учебной дисциплины СОО.01.05 ФИЗИКА направлено на достижение следующих целей:

формирование у обучающихся уверенности в ценности образования, значимости физических знаний для современного квалифицированного специалиста при осуществлении его профессиональной деятельности;

формирование естественно-научной грамотности;

овладение специфической системой физических понятий, терминологией и символикой; освоение основных физических теорий, законов, закономерностей;

овладение основными методами научного познания природы, используемыми в физике (наблюдение, описание, измерение, выдвижение гипотез, проведение эксперимента);

овладение умениями обрабатывать данные эксперимента, объяснять полученные результаты, устанавливать зависимости между физическими величинами в наблюдаемом явлении, делать выводы;

формирование умения решать физические задачи разных уровней сложности;

развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний с использованием различных источников информации и современных информационных технологий; умений формулировать и обосновывать собственную позицию по отношению к

физической информации, получаемой из разных источников;

воспитание чувства гордости за российскую физическую науку.

приобретение знаний о фундаментальных физических законах, лежащих в основе современной физической картины мира, принципов действия технических устройств и производственных процессов, о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии;

понимание физической сущности явлений, проявляющихся в рамках производственной деятельности;

освоение способов использования физических знаний для решения практических и профессиональных задач, объяснения явлений природы, производственных и технологических процессов, принципов действия технических приборов и устройств, обеспечения безопасности производства и охраны природы;

формирование умений решать учебно-практические задачи физического содержания с учётом профессиональной направленности;

приобретение опыта познания и самопознания; умений ставить задачи и решать проблемы с учётом профессиональной направленности;

формирование умений искать, анализировать и обрабатывать физическую информацию с

учётом профессиональной направленности;

подготовка обучающихся к успешному освоению дисциплин и модулей профессионального цикла: формирование у них умений и опыта деятельности, характерных для профессий / должностей служащих или специальностей, получаемых в профессиональных образовательных организациях;

подготовка к формированию общих компетенций будущего специалиста: самообразования, коммуникации, проявления гражданско-патриотической позиции, сотрудничества, принятия решений в стандартной и нестандартной ситуациях, проектирования, проведения физических измерений, эффективного и безопасного использования различных технических устройств, соблюдения правил охраны труда при работе с физическими приборами и оборудованием.

Особенность формирования совокупности задач изучения физики для системы среднего профессионального образования заключается в необходимости реализации профессиональной направленности решаемых задач, учёта особенностей сферы деятельности будущих специалистов.

2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная дисциплина «Физика» представляет собой фундаментальный курс, интегрирующий знания о базовых законах природы, определяющих структуру и поведение материи, а также энергии в различных формах ее проявления. Курс охватывает широкий спектр тем, от классической механики и термодинамики до электромагнетизма, оптики и квантовой физики, обеспечивая студентов необходимым теоретическим фундаментом для понимания современных технологий и научных исследований.

Дисциплина «Физика» тесно связана с другими частями ОПОП, особенно с дисциплинами математического и естественнонаучного цикла. Логическая взаимосвязь заключается в использовании математического аппарата для формализации физических законов и моделей, а содержательно-методическая — в применении физических принципов для анализа явлений и процессов, изучаемых в других дисциплинах, таких как химия, биология, геология и инженерия.

Требования к «входным» знаниям, умениям и готовностям включают в себя владение базовым математическим аппаратом (алгебра, геометрия, тригонометрия, начала математического анализа), понимание основных понятий химии и общей биологии, а также навыки работы с вычислительной техникой и программным обеспечением для обработки данных. Освоение предшествующих дисциплин, таких как «Математика», «Информатика» и «Введение в естественные науки», является необходимым условием для успешного изучения физики.

3. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ

Реализация программы дисциплины требует наличия учебного кабинета ,оснащенного оборудованием.

Оборудование учебного кабинета:

- рабочее место преподавателя;
- доска;
- столы для обучающихся;
- стулья для обучающихся.
- комплект учебно-наглядных пособий.

Технические средства обучения:

- проектор для отображения презентаций;
- компьютер преподавателя.

4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (личностные, метапредметные и предметные результаты освоения учебной дисциплины)

Освоение содержания учебной дисциплины «Физика» обеспечивает достижение студентами следующих результатов:

личностных:

- устойчивый интерес к истории и достижениям в области естественных наук, чувство гордости за российские естественные науки;
- готовность к продолжению образования, повышению квалификации в избранной профессиональной деятельности с использованием знаний в области естественных наук;
- объективное осознание значимости компетенций в области естественных наук для человека и общества, умение использовать технологические достижения в области физики, химии, биологии для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;
- умение проанализировать техногенные последствия для окружающей среды, бытовой и производственной деятельности человека;
- готовность самостоятельно добывать новые для себя естественно-научные знания с использованием для этого доступных источников информации;
- умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития;
- умение выстраивать конструктивные взаимоотношения в команде по решению общих задач в области естествознания; -

метапредметных:

- овладение умениями и навыками различных видов познавательной деятельности для изучения разных сторон окружающего естественного мира;
- применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон естественно-научной картины мира, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- умение определять цели и задачи деятельности, выбирать средства для их достижения на практике;
- умение использовать различные источники для получения естественнонаучной информации и оценивать ее достоверность для достижения поставленных целей и задач;

предметных:

- -сформированность представлений о целостной современной естественнонаучной картине мира, природе как единой целостной системе, взаимосвязи человека, природы и общества, пространственно-временны масштабах Вселенной;
- -владение знаниями о наиболее важных открытиях и достижениях в области естествознания, б повлиявших на эволюцию представлений о природе, на развитие техники и технологий;
- сформированность умения применять естественно-научные знания объяснения окружающих явлений, сохранения обеспечения здоровья, безопасности жизнедеятельности, бережного отношения природе, рационального природопользования, а также выполнения роли грамотного

потребителя;

- -сформированность представлений о научном методе познания природы и средствах изучения мегамира, макромира и микромира; владение приемами естественно-научных наблюдений, опытов, исследований и оценки достоверности полученных результатов;
- -владение понятийным аппаратом естественных наук, позволяющим познавать мир, участвовать в дискуссиях по естественно-научным вопросам, использовать различные источники информации для подготовки собственных работ, критически относиться к сообщениям СМИ, содержащим научную информацию; сформированность умений понимать значимость естественно-научного знания для каждого человека независимо от его профессиональной деятельности, различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей

5. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Объем учебной дисциплины и виды учебной работы

Очная форма

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	108
Обязательная аудиторная учебная нагрузка (всего)	54
в том числе:	
теоретическое обучение	18
лабораторные работы	
практические занятия	36
контрольные работы	
курсовой проект	
Самостоятельная работа обучающегося (всего)	45
в том числе:	
самостоятельная работа над курсовым проектом	
внеаудиторная самостоятельная работа	
Промежуточная аттестация в форме экзамена.	9

Заочная форма

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	108
Обязательная аудиторная учебная нагрузка (всего)	
в том числе:	
теоретическое обучение	
лабораторные работы	
практические занятия	6
контрольные работы	4
курсовой проект	
Самостоятельная работа обучающегося (всего)	98
в том числе:	

самостоятель						
внеаудиторна						
Промежуточная	аттестация	В	форме	экзамена.		

2.2. Тематический план и содержание дисциплины «<u>Физика»</u>

Наименование

Очная ф	орма
---------	------

лекций, Объем

Содержание учебного материала

раздело и тем	лабораторные и практические	занятия, часов			
раздело и тем	самостоятельная работа обучающихся,	курсовая			
	работа (проект) (если предусмотрены)	11) 0 0 2 3 3 1			
1	2	3			
Раздел 1.	Физика и методы научного познания.				
Тема 1.1.	Лекции	2			
Механика.	1 Механическое движение, его относите	ельность. Виды			
	движения и их графическое описание.				
	Взаимодействие тел. Законы динамик	и Ньютона.			
	2 Силы в природе. Закон всемирного тя	готения.			
	Невесомость.				
	3 Импульс. Закон сохранения импульса	и и реактивное			
	движение. Потенциальная и кинетиче	ская энергия.			
	Практические занятия/ Лабораторные заня	ятия 6			
	1 Механическое движение, его относит	ельность. Виды			
	движения и их графическое описание	.			
	Взаимодействие тел. Законы динамик	ки Ньютона.			
	2 Силы в природе. Закон всемирного тя	готения.			
	Невесомость.				
	3 Импульс. Закон сохранения импульса	а и реактивное			
	движение. Потенциальная и кинетиче	=			
	Самостоятельная работа обучающихся.	2			
Тема 1.2.	Лекции	2			
Молекулярная	1 История атомистических учений. Наб	людения и			
физика.	опыты, подтверждающие атомно-мол				
1	строение вещества. Масса и размеры	• •			
	2 Тепловое движение. Температура как	-			
	кинетической энергии частиц.	пори средлен			
	3 Агрегатные состояния вещества с точ	тки зпения			
	атомно-молекулярных представлений	=			
	переходы между агрегатными состоян				
	Практические занятия/ Лабораторные заня				
	1 История атомистических учений. Наб				
	опыты, подтверждающие атомно-мол				
	строение вещества. Масса и размеры				
	2 Тепловое движение. Температура как	мера средней			
	кинетической энергии частиц.				

	3	Агрегатные состояния вещества с точки зрения	
		атомно-молекулярных представлений. Взаимные	
		переходы между агрегатными состояниями.	
	Cox	переходы между агрегатными состояниями. иостоятельная работа обучающихся.	2
T 1.2			
Тема 1.3.		сции Го	2
Электродинамика.	1	Электрические заряды и их взаимодействие.	
		Электрическое поле. Проводники и изоляторы в	
		электрическом поле.	
	2	Постоянный электрический ток. Сила тока,	
		напряжение, электрическое сопротивление. Закон	
		Ома для участка цепи. Тепловое действие	
		электрического тока и закон Джоуля - Ленца.	
	3	Магнитное поле тока и действие магнитного поля на	
		проводник с током. Электродвигатель.	
	Пра	актические занятия/ Лабораторные занятия	6
	1	Электрические заряды и их взаимодействие.	
	1	Электрическое поле. Проводники и изоляторы в	
		электрическое поле. проводники и изоляторы в	
		DHOKEBHHOOKON HORO	
	2	электрическом поле.	
	2	Постоянный электрический ток. Сила тока,	
		напряжение, электрическое сопротивление. Закон	
		Ома для участка цепи. Тепловое действие	
		электрического тока и закон Джоуля - Ленца.	
	3	Магнитное поле тока и действие магнитного поля на	
		проводник с током. Электродвигатель.	
	Can	лостоятельная работа обучающихся.	2
Раздел 2.	Me	ханика.	
Тема 2.1.	Ле	кции	4
Кинематика.	1	Механическое движение.	
	2	Система отсчета.	
	Пр	актические занятия/ Лабораторные занятия	8
	1	Материальная точка.	
	2	Траектория.	
	3	Путь.	4
Тема 2.2.	-	мостоятельная работа обучающихся	4
Тема 2.2. Динамика.	1	КЦИИ	2
динамика.	2	Основы динамики. Проекции сил.	
		актические занятия/ Лабораторные занятия	8
	1	Законы Ньютона.	O .
	2	Сила упругости.	
	3	Вес тела.	
	Ко		
		6	
Тема 2.3. Законы	_	мостоятельная работа обучающихся кции	4
сохранения в	1	Закон сохранения импульса. Реактивное	
механике.		движение.	
i	2	Механическая работа энергии.	

	Практич	еские заня	ятия/ Лаборат	орные занятия		8
	1 Закон сохранения импульса. Реактивное					
		движение	e.			
	2	Механич	еская работа:	энергии.		
	3	Закон сох	хранения энер	огии. Мощность.		
	Консульт	гации				
	Самосто	ятельная 1	работа обучак	ощихся		4
Примерная тема предусмотрены)	тика к	урсовой	работы	(проекта)	(если	
Самостоятельная (проектом) (если пр			хся над	курсовой ј	работой	
Экзамен						9
					Всего:	72

Зачная форма

	за тай форма	
Наименование	Содержание учебного материала лекций,	Объем
раздело и тем	лабораторные и практические занятия,	часов
	самостоятельная работа обучающихся, курсовая	
	работа (проект) (если предусмотрены)	
1	2	3
Раздел 1.	Физика и методы научного познания.	
Тема 1.1.	Лекции	
Механика.	1 Механическое движение, его относительность. Виды	
	движения и их графическое описание.	
	Взаимодействие тел. Законы динамики Ньютона.	

	2	Силы в природе. Закон всемирного тяготения.	
		Невесомость.	
	2		
	3	Импульс. Закон сохранения импульса и реактивное	
		движение. Потенциальная и кинетическая энергия.	
	Пра	актические занятия/ Лабораторные занятия	2
	1	Механическое движение, его относительность. Виды	
		движения и их графическое описание.	
		Взаимодействие тел. Законы динамики Ньютона.	
	2	Силы в природе. Закон всемирного тяготения.	
		Невесомость.	
	3	Импульс. Закон сохранения импульса и реактивное	
		движение. Потенциальная и кинетическая энергия.	
	Car	мостоятельная работа обучающихся.	16
Тема 1.2.	Лег	кции	
Молекулярная	1	История атомистических учений. Наблюдения и	
физика.		опыты, подтверждающие атомно-молекулярное	
		строение вещества. Масса и размеры молекул.	
	2	Тепловое движение. Температура как мера средней	
		кинетической энергии частиц.	
	3	Агрегатные состояния вещества с точки зрения	
		атомно-молекулярных представлений. Взаимные	
		переходы между агрегатными состояниями.	

	11p	aktii leekile saimiina suoopatopiisie saimiini	_
	1	История атомистических учений. Наблюдения и	
		опыты, подтверждающие атомно-молекулярное	
		строение вещества. Масса и размеры молекул.	
	2	Тепловое движение. Температура как мера средней	
		кинетической энергии частиц.	
	3	Агрегатные состояния вещества с точки зрения	
		атомно-молекулярных представлений. Взаимные	
		переходы между агрегатными состояниями.	20
		мостоятельная работа обучающихся.	20
Тема 1.3.		кции	
Электродинамика.	1	Электрические заряды и их взаимодействие.	
		Электрическое поле. Проводники и изоляторы в	
		электрическом поле.	
	2	Постоянный электрический ток. Сила тока,	
		напряжение, электрическое сопротивление. Закон	
		Ома для участка цепи. Тепловое действие	
		электрического тока и закон Джоуля - Ленца.	
	3	Магнитное поле тока и действие магнитного поля на	
		проводник с током. Электродвигатель.	
	Пп	актические занятия/ Лабораторные занятия	2
	1		
	1	Электрические заряды и их взаимодействие.	
		Электрическое поле. Проводники и изоляторы в	
		электрическом поле.	
	2	Постоянный электрический ток. Сила тока,	
		напряжение, электрическое сопротивление. Закон	
		Ома для участка цепи. Тепловое действие	
		электрического тока и закон Джоуля - Ленца.	
	3	Магнитное поле тока и действие магнитного поля на	
		проводник с током. Электродвигатель.	
	Car	мостоятельная работа обучающихся.	10
Раздел 2.		ханика.	
Тема 2.1.	Ле	кции	
Кинематика.	1	Механическое движение.	
	2	Система отсчета.	
	Пр	рактические занятия/ Лабораторные занятия	
	1	Материальная точка.	
	2	Траектория.	
	3	Путь.	
	_	мостоятельная работа обучающихся	20
Тема 2.2.		кции	
Динамика.	1	Основы динамики.	
	2	Проекции сил.	
		рактические занятия/ Лабораторные занятия	
	1	Законы Ньютона.	
	2	Сила упругости.	

Практические занятия/ Лабораторные занятия

	3 Вес тела.	
	Консультации	
	Самостоятельная работа обучающихся	20
Тема 2.3. Законы	Лекции	
сохранения в	1 Закон сохранения импульса. Реактивное	
механике.	движение.	
	2 Механическая работа энергии.	
	Практические занятия/ Лабораторные занятия	4
	1 Закон сохранения импульса. Реактивное	
	движение.	
	2 Механическая работа энергии.	
	3 Закон сохранения энергии. Мощность.	
	Консультации	
	Самостоятельная работа обучающихся	12
Примерная тема предусмотрены)	тика курсовой работы (проекта) (если	
Самостоятельная	работа обучающихся над курсовой работой	
(проектом) (если пр		
Экзамен		
	Всего:	108

1.УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

1.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебного кабинета теории и методики социальной работы;

Оборудование учебного кабинета: Учебная мебель (стулья со столиком и подлокотниками ученические, преподавательские стул и стол).

Технические средства обучения: <u>Настенная маркерная доска/экран — 1шт., мультимедийный проектор (переносной) — 1 шт., Ноутбук с возможностью подключения к сети «Интернет».</u>

1.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основная литература

- 1. Пурышева Н.С., Важеевская Н.Е., Исаев Д.А. и др./ Физика: базовый уровень: учебник для образовательных организаций, реализующих образовательные программы среднего профессионального образования; 1¬е издание Москва: Просвещение, 2024. —418 с. ISBN 978-5-09-107580
- 2. Текст : электронный // Электронный ресурс цифровой образовательной среды СПО PROFобразование : [сайт]. URL: https://profspo.ru/fpu-books/701409

Дополнительная литература

- 1. Мякишев Г. Я. , Петрова М. А. и др. «Физика.10 класс. Базовый уровень» URL: https://profspo.ru/fpu-books/700204
- 3. Пурышева Н.С., Важеевская Н.Е., Исаев Д.А. и др. /Физика: базовый уровень: практикум по решению задач: учебное пособие, разработанное в комплекте с учебником, учебником для образовательных организаций, реализующих образовательные программы среднего профессионального образования. 1-е издание;

2.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения (освоенные умения, Формы и методы контроля и оценки усвоенные знания): результатов обучения: выделять основные тенденции и этапы - подготовка и защита реферата развития социальной работы в России и за - подготовка презентации рубежом; выполнение группового творческого оценивать экономическую и социальную задания эффективность деятельности в сфере - подготовка презентации социального обслуживания; - выполнение группового творческого - использовать основные критерии задания; подготовка и защита реферата социального благополучия; - выполнение группового творческого основывать выбор технологий в задания; подготовка и защита реферата соответствии с эффективной моделью

теории и практики социальной работы; выбирать методы, соответствующие целям и задачам исследования; Перечисляются все знания и умения, указанные в п.4 паспорта программы: - основы социальной работы для ее изучения как научной теории, общественного феномена, социальной деятельности и учебной дисциплины; основы современной теории социального благополучия;	- выполнение группового творческого задания; подготовка презентации - подготовка и защита реферата - выполнение группового творческого задания - выполнение группового творческого задания; подготовка и защита реферата - выполнение группового творческого
 - основные концепции и теории в области психосоциальной, структурной и комплексно ориентированной социальной работы; - общенаучные и специальные методы исследования в социальной работе; - история развития и особенности современного социального образования. 	задания подготовка и защита реферата - выполнение группового творческого задания; - подготовка презентации;

Результаты переносятся из паспорта рабочей программы. Перечень форм контроля следует конкретизировать с учетом специфики обучения по рабочей программе дисциплины.

3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для студентов:

- 1. Физика: Учебник для вузов. / Под ред. Д.В. Сивухина. М.: Физматлит, 2002-2009. (Классический многотомный курс физики).
- 2. Иродов И.Е. Задачи по общей физике. М.: Физматлит, 2006. (Сборник задач повышенной сложности).
- 3. Савельев И.В. Курс общей физики. М.: Астрель, 2001-2008. (Общий курс, охватывающий все разделы физики).
- 4. Трофимова Т.И. Курс физики. М.: Высшая школа, 2006. (Учебник с акцентом на прикладные аспекты).
- 5. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2007. (Учебник с большим количеством примеров решения задач).

Для преподавателей:

- 1. Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М.: Физматлит, 2001-2010. (Фундаментальный курс для глубокого изучения теоретической физики).
- 2. Фейнмановские лекции по физике. М.: Едиториал УРСС, 2003-2007. (Оригинальный подход к изложению физических концепций).
- 3. Киттель Ч., Найт У., Рудерман М. Берклеевский курс Физики. Том 1. Механика. М.: Наука. 1971.
- 4. Хвольсон О.Д. Курс физики. СПб.: Лань, 2007. (Полный академический курс физики).
- 5. Силин Р.А. Физика: методические указания. : Электронный текст. (Методические материалы по различным разделам физики).

Справочники, энциклопедии:

1. Физическая энциклопедия. / Под ред. А.М. Прохорова. – М.: Большая Российская энциклопедия, 1988-1998. (Многотомное издание, охватывающее все области физики).

- 2. Справочник по физике. / Под ред. Я.Б. Зельдовича. М.: Наука, 1973. (Справочник с формулами, таблицами и графиками).
- 3. Краткий физико-технический справочник. / Под ред. К.П. Яковлева. М.: Физматлит, 1960-1963. (Краткий справочник основных физических величин и формул).

Интернет-ресурсы:

- 1. PhysNet The Physical Sciences Network: http://www.physnet.org/ (Портал с ресурсами для физиков).
- 2. HyperPhysics: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html (Интерактивный учебник по физике).
- 3. Khan Academy Physics: https://www.khanacademy.org/science/physics (Бесплатные видеолекции и упра