МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Филиал в г. Хасавюрте

РАБОЧАЯ ПРОГРАММА ОБЩЕОБРАЗОВАТЕЛЬНОЙ УЧЕБНОЙ

ДИСЦИПЛИНЫ COO.01.06. «Химия»

по программе подготовки специалистов среднего звена (ППССЗ) среднего

профессионального образования

Специальность: 38.02.01 Экономика и бухгалтерский учет (по

отраслям)

Обучение: по программе базовой подготовки

Уровень образования, на

базе которого

осваивается ППССЗ: Основное общее образование

Квалификация: Экономист

Форма обучения: Очная, заочная

Рабочая программа дисциплины разработана на основе требований Федерального государственного образовательного стандарта (далее - ФГОС) среднего общего образования, ФГОС СПО приказ № 437 от 24 июня 2024 г. по специальности 38.02.01 Экономика и бухгалтерский учет (по отраслям), с учетом содержания программы дисциплины «Химия» для реализации основной образовательной программы СПО на базе основного общего образования с получением среднего общего образования.

Организация-разработчик: Филиал федерального государственного бюджетного образовательного учреждение высшего образования «Дагестанский государственный университет» в г. Хасавюрте (Филиал ДГУ в г. Хасавюрте)

Разработчики:

Ахматова Р.А. преподаватель, доцент кафедры гуманитарных и ествественнонаучных дисциплин филиала ДГУ в г. Хасавюрте

Рабочая программа дисциплины рассмотрена и рекомендована к утверждению на

Председатель Сос М. Разаков заседании ПЦК гуманитарных и естественнонаучных дисциплин филиала ДГУ в г. Хасавюрте протокол № 7 от « 27» 03 2025 года.

На заседании учебно-методической комиссии филиала ДГУ в г. Хасавюрте протокол № 7 от «27» <u>03</u> 2025года.

Председатель Дадаев Д.Х.

СОДЕРЖАНИЕ

- 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- 2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ
- 3. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ
- 4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 5. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 6. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
- 7. УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 8. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

1.1. Область применения программы учебной дисциплины

Общеобразовательная учебная дисциплина «Химия» изучается в филиале ДГУ в г.Хасавюрте реализующего образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образования при подготовке специалистов среднего звена. Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к содержанию и результатам освоения структуре, дисциплины «Химия», ФГОС СПО по специальности 38.02.01 «Экономика и бухгалтерский учет» (по отраслям), в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования, а также с учетом содержания примерной программы общеобразовательной учебной дисциплины «Химия», основной профессиональной ДЛЯ реализации образовательной программы СПО на базе основного общего образования с получением среднего общего образования.

2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ «ХИМИЯ»

Отбор содержания проводился на основе следующих ведущих идей:

- материальное единство веществ природы и их генетическая связь;
- причинно-следственные связи между составом, строением, свойствами и применением веществ;
 - познаваемость мира и закономерностей химических процессов;
- объясняющая и прогнозирующая роль теоретических знаний для фактологического материала;
- конкретное химическое соединение представляет собой звено в непрерывной цепи превращений веществ, оно участвует в круговороте химических веществ и в химической эволюции;
- законы природы объективны и познаваемы; знание законов химии дает возможность управлять превращениями веществ, находить экологически безопасные способы производства веществ и материалов и охраны окружающей среды от химического загрязнения;
- наука и практика взаимосвязаны: требования практики движущая сила развития науки, успехи практики обусловлены достижениями науки;

- развитие химической науки и химизация народного хозяйства служат интересам человека и общества в целом, имеют гуманистический характер и призваны способствовать решению глобальных проблем человечества.

При структурировании содержания учебной дисциплины учитывалась объективная реальность — небольшой объем часов, отпущенных на изучение химии, и стремление максимально соответствовать идеям развивающего обучения. Поэтому теоретические вопросы максимально смещены к началу изучения дисциплины с тем, чтобы последующий фактический материал рассматривался на основе изученных теорий.

Реализация дедуктивного подхода к изучению химии способствует развитию таких логических операций мышления, как анализ и синтез, обобщение и конкретизация, сравнение и аналогия, систематизация и классификация и др.

Специфика изучения химии при овладении профессиями и специальностями технического профиля отражена и реализуется при индивидуальной самостоятельной работе обучающихся (написание рефератов, подготовка сообщений, защита проектов), в процессе учебной деятельности под руководством преподавателя (выполнение химического эксперимента — лабораторных опытов и практических работ, решение практикоориентированных расчетных задач и т.д.).

В программе теоретические сведения дополняются демонстрациями, лабораторными опытами и практическими работами.

При изучении химии значительное место отводится химическому эксперименту. Он открывает возможность формировать у обучающихся специальные предметные умения работать с веществами, выполнять простые химические опыты, учит безопасному и экологически грамотному обращению с веществами, материалами и процессами в быту и на производстве.

Программа содержит тематику рефератов для организации самостоятельной деятельности обучающихся, овладевающих профессиями технического и естественнонаучного профилей в учреждениях СПО.

В процессе изучения химии важно формировать информационную компетентность обучающихся. Поэтому при организации самостоятельной работы необходимо акцентировать внимание обучающихся на поиске информации в средствах масс-медиа, Интернете, в учебной и специальной литературе с соответствующим оформлением и представлением результатов.

Программа может использоваться другими образовательными учреждениями, реализующими образовательную программу среднего (полного) общего образования.

Изучение общеобразовательной учебной дисциплины «химия» завершается подведением итогов в форме дифференцированного зачета в рамках промежуточной аттестации студентов в процессе освоения основной ОПОП СПО с получением среднего общего образования (ППКРС, ППССЗ).

3. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ

Учебная дисциплина «Химия» является учебным предметом из обязательной предметной области «Естествознание» ФГОС среднего общего образования. Учебная дисциплина «Химия» изучается в общеобразовательном цикле учебного плана ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППССЗ)

В учебном плане учебная дисциплина СОО 01.06. «Химия» относится к общеобразовательным учебным дисциплинам, формируемых из обязательных

предметных областей ФГОС среднего общего образования для специальности СПО соответствующего профиля профессионального образования.

4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Планируемые результаты освоения программы по химии на уровне среднего общего образования.

ФГОС СОО устанавливает требования к результатам освоения обучающимися программ среднего общего образования (личностным, метапредметным и предметным). Научно-методической основой для разработки планируемых результатов освоения программ среднего общего образования является системно-деятельностный подход.

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения предмета "Химия" на уровне среднего общего образования выделены следующие составляющие:

осознание обучающимися российской гражданской идентичности - готовности к саморазвитию, самостоятельности и самоопределению;

наличие мотивации к обучению;

целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций базовой науки химии;

готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими целостной системе химического образования;

наличие правосознания экологической культуры и способности ставить цели и строить жизненные планы.

Личностные результаты освоения предмета "Химия" достигаются в единстве учебной и воспитательной деятельности в соответствии с гуманистическими, социокультурными, духовно-нравственными ценностями и идеалами российского гражданского общества, принятыми в обществе нормами и правилами поведения, способствующими процессам самопознания, саморазвития и нравственного становления личности обучающихся.

Личностные результаты освоения предмета "Химия" отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии:

уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда ученых и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

готовности оценивать свое поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учетом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе, как источнику существования жизни на Земле:

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

сформированное мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания ее роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убежденности в особой значимости химии для современной цивилизации: в ее гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества - сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нем изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию и исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности.

Метапредметные результаты освоения учебного предмета "Химия" на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, всесторонне ее рассматривать;

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать при освоении знаний приемы логического мышления - выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций;

устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать

выводы и заключения;

применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления - химический знак (символ) элемента, химическая формула, уравнение химической реакции - при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчет о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

ориентироваться в различных источниках информации (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать ее достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определенного типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведенных исследований путем согласования позиций в ходе обсуждения и обмена мнениями.

Овладение универсальными регулятивными действиями:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя ее цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учетом получения новых знаний о веществах и химических реакциях;

осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки.

Предметные результаты освоения программы среднего общего образования по химии на базовом уровне ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки обучающихся. Они включают специфические для учебного предмета "Химия" научные знания, умения и способы действий по освоению, интерпретации и преобразованию знаний, виды деятельности по получению нового знания и применению знаний в различных учебных и реальных жизненных ситуациях, связанных с химией. В программе по химии предметные результаты представлены по годам изучения.

сформированность представлений о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, ее функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает:

основополагающие понятия (химический элемент, атом, электронная оболочка атома, молекула, валентность, электроотрицательность, химическая связь, структурная формула (развернутая и сокращенная), моль, молярная масса, молярный объем, углеродный скелет, функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород и азотсодержащие соединения, мономер, полимер, структурное звено, высокомолекулярные соединения);

теории и законы (теория строения органических веществ А.М. Бутлерова, закон сохранения массы веществ);

закономерности, символический язык химии;

мировоззренческие знания, лежащие в основе понимания причинности и системности

химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших органических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений;

сформированность умений использовать химическую символику для составления молекулярных и структурных (развернутой, сокращенной) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения;

сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определенному классу/группе соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC), а также приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин);

сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные);

сформированность умения применять положения теории строения органических веществ А.М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ;

сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза, крахмал, целлюлоза, аминоуксусная кислота), иллюстрировать генетическую связь между ними уравнениями соответствующих химических реакций с использованием структурных формул;

сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки;

сформированность умений проводить вычисления по химическим уравнениям (массы, объема, количества исходного вещества или продукта реакции по известным массе, объему, количеству одного из исходных веществ или продуктов реакции);

сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определенных органических веществ, понимая смысл показателя ПДК (предельно допустимой концентрации), пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефно точечную систему обозначений Л. Брайля для записи химических формул

сформированность представлений о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, ее функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает:

основополагающие понятия (химический элемент, атом, изотоп, s-, p-, d- электронные орбитали атомов, ион, молекула, моль, молярный объем, валентность, электроотрицательность, степень окисления, химическая связь (ковалентная, ионная, металлическая, водородная), кристаллическая решетка, типы химических реакций, раствор, электролиты, неэлектролиты, электролитическая диссоциация, окислитель, восстановитель, скорость химической реакции, химическое равновесие);

теории и законы (теория электролитической диссоциации, периодический закон Д.И. Менделеева, закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях), закономерности, символический язык химии, мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании неорганических веществ и их превращений;

сформированность умений использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных неорганических веществ (угарный газ, углекислый газ, аммиак, гашеная известь, негашеная известь, питьевая сода, пирит и другие);

сформированность умений определять валентность и степень окисления химических элементов в соединениях различного состава, вид химической связи (ковалентная, ионная, металлическая, водородная) в соединениях, тип кристаллической решетки конкретного вещества (атомная, молекулярная, ионная, металлическая), характер среды в водных растворах неорганических соединений;

сформированность умений устанавливать принадлежность неорганических веществ по их составу к определенному классу/группе соединений (простые вещества - металлы и неметаллы, оксиды, основания, кислоты, амфотерные гидроксиды, соли);

сформированность умений раскрывать смысл периодического закона Д.И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции;

сформированность умений характеризовать электронное строение атомов химических элементов 1 - 4 периодов Периодической системы химических элементов Д.И. Менделеева, используя понятия "s-, p-, d-электронные орбитали", "энергетические уровни", объяснять закономерности изменения свойств химических элементов и их соединений по периодам и группам Периодической системы химических элементов Д.И. Менделеева;

сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций;

сформированность умения классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости реакции, участию катализатора);

сформированность умений составлять уравнения реакций различных типов, полные и сокращенные уравнения реакций ионного обмена, учитывая условия, при которых эти реакции идут до конца;

сформированность умений проводить реакции, подтверждающие качественный состав различных неорганических веществ, распознавать опытным путем ионы, присутствующие в водных растворах неорганических веществ;

сформированность умений раскрывать сущность окислительно-восстановительных реакций посредством составления электронного баланса этих реакций;

сформированность умений объяснять зависимость скорости химической реакции от различных факторов; характер смещения химического равновесия в зависимости от внешнего воздействия (принцип Ле Шателье);

сформированность умений характеризовать химические процессы, лежащие в основе промышленного получения серной кислоты, аммиака, а также сформированность представлений об общих научных принципах и экологических проблемах химического производства;

сформированность умений проводить вычисления с использованием понятия "массовая доля вещества в растворе", объемных отношений газов при химических реакциях, массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ, теплового эффекта реакции на основе законов сохранения массы веществ, превращения и сохранения энергии;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, влияние различных факторов на скорость химической реакции, реакции ионного обмена, качественные реакции на сульфат-, карбонат- и хлорид-анионы, на катион аммония, решение экспериментальных задач по темам "Металлы" и "Неметаллы") в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой коммуникации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определенных веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефно точечную систему обозначений Л. Брайля для записи химических формул.

Содержание обучения в 10 классе.

1. Органическая химия.

2. Теоретические основы органической химии.

Предмет органической химии: ее возникновение, развитие и значение в получении новых веществ и материалов. Теория строения органических соединений А.М. Бутлерова, ее основные положения. Структурные формулы органических веществ. Гомология, изомерия. Химическая связь в органических соединениях - одинарные и кратные связи.

Представление о классификации органических веществ. Номенклатура органических соединений (систематическая) и тривиальные названия важнейших представителей классов органических веществ.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами органических веществ и материалами на их основе, моделирование молекул органических веществ, наблюдение и описание демонстрационных опытов по превращению органических веществ при нагревании (плавление, обугливание и горение).

Углеводороды.

Алканы: состав и строение, гомологический ряд. Метан и этан - простейшие представители алканов: физические и химические свойства (реакции замещения и горения), нахождение в природе, получение и применение.

Алкены: состав и строение, гомологический ряд. Этилен и пропилен - простейшие представители алкенов: физические и химические свойства (реакции гидрирования, галогенирования, гидратации, окисления и полимеризации), получение и применение.

Алкадиены: бутадиен-1,3 и метилбутадиен-1,3: строение, важнейшие химические свойства (реакция полимеризации). Получение синтетического каучука и резины.

Алкины: состав и особенности строения, гомологический ряд. Ацетилен - простейший представитель алкинов: состав, строение, физические и химические свойства (реакции гидрирования, галогенирования, гидратации, горения), получение и применение.

Арены. Бензол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Токсичность аренов. Генетическая связь между углеводородами, принадлежащими к различным классам.

Природные источники углеводородов. Природный газ и попутные нефтяные газы. Нефть и ее происхождение. Способы переработки нефти: перегонка, крекинг (термический, каталитический), пиролиз. Продукты переработки нефти, их применение в промышленности и в быту. Каменный уголь и продукты его переработки.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами пластмасс, каучуков и резины, коллекции "Нефть" и "Уголь", моделирование молекул углеводородов и галогенопроизводных, проведение практической работы: получение этилена и изучение его свойств.

Расчетные задачи.

Вычисления по уравнению химической реакции (массы, объема, количества исходного вещества или продукта реакции по известным массе, объему, количеству одного из исходных веществ или продуктов реакции).

Кислородсодержащие органические соединения.

Предельные одноатомные спирты. Метанол и этанол: строение, физические и химические свойства (реакции с активными металлами, галогеноводородами, горение), применение. Водородные связи между молекулами спиртов. Действие метанола и этанола на организм человека.

Многоатомные спирты. Этиленгликоль и глицерин: строение, физические и химические свойства (взаимодействие со щелочными металлами, качественная реакция на многоатомные спирты). Действие на организм человека. Применение глицерина и этиленгликоля.

Фенол: строение молекулы, физические и химические свойства. Токсичность фенола. Применение фенола.

Альдегиды. Формальдегид, ацетальдегид: строение, физические и химические свойства (реакции окисления и восстановления, качественные реакции), получение и применение.

Одноосновные предельные карбоновые кислоты. Муравьиная и уксусная кислоты: строение, физические и химические свойства (свойства, общие для класса кислот, реакция этерификации), получение и применение. Стеариновая и олеиновая кислоты как представители высших карбоновых кислот. Мыла как соли высших карбоновых кислот, их моющее действие.

Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров. Жиры. Гидролиз жиров. Применение жиров. Биологическая роль жиров.

Углеводы: состав, классификация углеводов (моно-, ди- и полисахариды). Глюкоза - простейший моносахарид: особенности строения молекулы, физические и химические свойства (взаимодействие с гидроксидом меди(II), окисление аммиачным раствором оксида серебра(I), восстановление, брожение глюкозы), нахождение в природе, применение, биологическая роль. Фотосинтез. Фруктоза как изомер глюкозы.

Крахмал и целлюлоза как природные полимеры. Строение крахмала и целлюлозы. Физические и химические свойства крахмала (гидролиз, качественная реакция с иодом).

Экспериментальные методы изучения веществ и их превращений: проведение, наблюдение и описание демонстрационных опытов: горение спиртов, качественные реакции одноатомных спиртов (окисление этанола оксидом меди(II)), многоатомных спиртов (взаимодействие глицерина с гидроксидом меди(II)), альдегидов (окисление аммиачным раствором оксида серебра(I) и гидроксидом меди(II), взаимодействие крахмала с иодом), проведение практической работы: свойства раствора уксусной кислоты.

Расчетные задачи.

Вычисления по уравнению химической реакции (массы, объема, количества исходного вещества или продукта реакции по известным массе, объему, количеству одного из исходных веществ или продуктов реакции).

Азотсодержащие органические соединения.

Аминокислоты как амфотерные органические соединения. Физические и химические свойства аминокислот (на примере глицина). Биологическое значение аминокислот. Пептиды.

Белки как природные высокомолекулярные соединения. Первичная, вторичная и третичная структура белков. Химические свойства белков: гидролиз, денатурация, качественные реакции на белки.

Экспериментальные методы изучения веществ и их превращений: наблюдение и описание демонстрационных опытов: денатурация белков при нагревании, цветные реакции белков.

Высокомолекулярные соединения.

Основные понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Основные методы синтеза высокомолекулярных соединений - полимеризация и поликонденсация.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами природных и искусственных волокон, пластмасс, каучуков.

Межпредметные связи.

Реализация межпредметных связей при изучении органической химии в 10 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: явление, научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, измерение, эксперимент, моделирование.

Физика: материя, энергия, масса, атом, электрон, молекула, энергетический уровень, вещество, тело, объем, агрегатное состояние вещества, физические величины и единицы их измерения.

Биология: клетка, организм, биосфера, обмен веществ в организме, фотосинтез, биологически активные вещества (белки, углеводы, жиры, ферменты).

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: пищевые продукты, основы рационального питания, моющие средства, лекарственные и косметические препараты, материалы из искусственных и синтетических волокон.

Содержание обучения в 11 классе.

Общая и неорганическая химия.

Теоретические основы химии.

Химический элемент. Атом. Ядро атома, изотопы. Электронная оболочка. Энергетические

уровни, подуровни. Атомные орбитали, s-, p-, d- элементы. Особенности распределения электронов по орбиталям в атомах элементов первых четырех периодов. Электронная конфигурация атомов.

Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Связь периодического закона и Периодической системы химических элементов Д.И. Менделеева с современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона в развитии науки.

Строение вещества. Химическая связь. Виды химической связи (ковалентная неполярная и полярная, ионная, металлическая). Механизмы образования ковалентной химической связи (обменный и донорно-акцепторный). Водородная связь. Валентность. Электроотрицательность. Степень окисления. Ионы: катионы и анионы.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава вещества. Типы кристаллических решеток. Зависимость свойства веществ от типа кристаллической решетки.

Понятие о дисперсных системах. Истинные и коллоидные растворы. Массовая доля вещества в растворе.

Классификация неорганических соединений. Номенклатура неорганических веществ. Генетическая связь неорганических веществ, принадлежащих к различным классам.

Химическая реакция. Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях.

Скорость реакции, ее зависимость от различных факторов. Обратимые реакции. Химическое равновесие. Факторы, влияющие на состояние химического равновесия. Принцип Ле Шателье.

Электролитическая диссоциация. Сильные и слабые электролиты. Среда водных растворов веществ: кислая, нейтральная, щелочная. Реакции ионного обмена.

Окислительно-восстановительные реакции.

Экспериментальные методы изучения веществ и их превращений: демонстрация таблиц "Периодическая система химических элементов Д.И. Менделеева", изучение моделей кристаллических решеток, наблюдение и описание демонстрационных и лабораторных опытов (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, реакции ионного обмена), проведение практической работы "Влияние различных факторов на скорость химической реакции".

Расчетные задачи.

Расчеты по уравнениям химических реакций, в том числе термохимические расчеты, расчеты с использованием понятия "массовая доля вещества".

Раздел 2. Неорганическая химия.

Неметаллы. Положение неметаллов в Периодической системе химических элементов Д.И. Менделеева и особенности строения атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода).

Химические свойства важнейших неметаллов (галогенов, серы, азота, фосфора, углерода и кремния) и их соединений (оксидов, кислородсодержащих кислот, водородных соединений).

Применение важнейших неметаллов и их соединений.

Металлы. Положение металлов в Периодической системе химических элементов Д.И. Менделеева. Особенности строения электронных оболочек атомов металлов. Общие физические свойства металлов. Сплавы металлов. Электрохимический ряд напряжений металлов.

Химические свойства важнейших металлов (натрий, калий, кальций, магний, алюминий, цинк, хром, железо, медь) и их соединений.

Общие способы получения металлов. Применение металлов в быту и технике.

Экспериментальные методы изучения веществ и их превращений: изучение коллекции "Металлы и сплавы", образцов неметаллов, решение экспериментальных задач, наблюдение и описание демонстрационных и лабораторных опытов (взаимодействие гидроксида алюминия с растворами кислот и щелочей, качественные реакции на катионы металлов).

Расчетные задачи.

Расчеты массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ, расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ имеет примеси.

Химия и жизнь. Межпредметные связи.

Роль химии в обеспечении экологической, энергетической и пищевой безопасности, развитии медицины. Понятие о научных методах познания веществ и химических реакций.

Представления об общих научных принципах промышленного получения важнейших веществ.

Человек в мире веществ и материалов: важнейшие строительные материалы, конструкционные материалы, краски, стекло, керамика, материалы для электроники, наноматериалы, органические и минеральные удобрения.

Химия и здоровье человека: правила использования лекарственных препаратов, правила безопасного использования препаратов бытовой химии в повседневной жизни.

Реализация межпредметных связей при изучении общей и неорганической химии в 11 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, явление.

Физика: материя, энергия, масса, атом, электрон, протон, нейтрон, ион, изотоп, радиоактивность, молекула, энергетический уровень, вещество, тело, объем, агрегатное состояние вещества, физические величины и единицы их измерения, скорость.

Биология: клетка, организм, экосистема, биосфера, макро- и микроэлементы, витамины, обмен веществ в организме.

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: химическая промышленность, металлургия, производство строительных материалов, сельскохозяйственное производство, пищевая промышленность, фармацевтическая промышленность, производство косметических препаратов, производство конструкционных материалов, электронная промышленность, нанотехнологии.

5. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

При реализации содержания общеобразовательной учебной дисциплины «Химия» в пределах освоения ОПОП СПО на базе основного общего образования получением среднего общего образования (ППССЗ) максимальная учебная нагрузка обучающихся составляет:

- по очной форме обучения 72 часов, из них обязательная аудиторная нагрузка обучающихся, включая практические занятия, 36 часа, Промежуточная аттестация- 4.
- по заочной форме обучения 36 часов, из них обязательная аудиторная нагрузка обучающихся, включая практические занятия, 6 часов, внеаудиторная самостоятельная работа студентов 30 часов.

очная форма обучения

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	72
Обязательная аудиторная учебная нагрузка (всего) в том числе:	36
лекции	18
практические занятия	18
Самостоятельная работа обучающегося (всего)	32(18+14)
Консультация	-
Промежуточная аттестация в форме	д/зачета 4

Форма обучения - заочная

Вид учебной работы	Объем
	часов
Максимальная учебная нагрузка (всего)	72
Обязательная аудиторная учебная нагрузка (всего) в том	36
числе:	
теоретическое обучение	-
практические занятия	6
Самостоятельная работа обучающегося (всего)	30
Консультация	-
Промежуточная аттестация в форме	д/зачета 4

Nº	Наименование разделов и тем программы	Количе часов	ество		Электронные	Формы и методы
п/п		Лекция	Практ. работы	Самостоя тельная работа	ресурсы	контроля и оценка результата обучения
	здел 1. Теоретическ танической химии	ие основь	ol			
1. 1	Предмет органической химии. Теория строения органических соединений А. М.	-	1	4	https://profspo.ru/cat alog/books/fpu- books	Контрольные вопросы Тестирование Контрольная работа Реферат
Итс	ого по разделу	_	1	4		
Pas	здел 2. Углеводород	цы	1			

2. 1	Предельные углеводороды — алканы	-	1	4	https://profspo.ru/cat alog/books/fpu- books	Контрольные вопросы Тестирование Контрольная работа Реферат
2. 2	Непредельные углеводороды: алкены, алкадиены, алкины	-	1	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат
2.	Ароматические углеводороды	-	1	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Контрольная работа Реферат
2. 4	Природные источники углеводородов и их переработка	-	1	6	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Контрольная работа Реферат
Ито	ого по разделу	-	6	26		
	здел 3. Кислородсоде ганические соединен	•	2			
3.	Спирты. Фенол	-	1	4	https://profspo.ru/cat alog/books/fpu- books	Контрольные вопросы Тестирование Контрольная работа Реферат
Ито	ого по разделу	-	6	30		

Общее число часов, отведённых для изучения химии, на базовом уровне среднего общего образования, составляет 72 часов в 2 семестре.

№ п/п	Наименование разделов и тем программы	Количест	во часов		— Электронные ресурсы	Формы и методы контроля и оценка результата обучения
		Лекция	Практ. работы	Самостоя тельная работа		
Раздел 1.		химии				
1.1	Предмет органической химии. Теория строения органических соединений А. М. Бутлерова	2	2	2	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат
Итого по р	разделу	2	2	2		
Раздел 2.	Углеводороды					
2.1	Предельные углеводороды — алканы	2	2	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат

2.2	Непредельные углеводороды: алкены, алкадиены, алкины	2	2	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат
2.3	Ароматические углеводороды	1	1	2	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Контрольная работа Реферат
2.4	Природные источники углеводородов и их переработка	1	1	1	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Контрольная работа Реферат
	Итого по разделу Раздел 3. Кислородсодержащие органические сое		6	11		
3.1	Спирты. Фенол	2	2	2	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат
3.2	Альдегиды. Карбоновые кислоты. Сложные эфиры	2	2	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат

3.3. Итого по	Жиры. Углеводы. разделу	6	6	4	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Контрольная работа Реферат
Раздел 4.	Азотсодержащие органические соедин	ения			·	
4.1	Амины. Аминокислоты. Белки	2	2	4	https://profspo.ru/cat	Контрольные вопросы
					alog/books/fpu- books	Тестирование Контрольная работа Реферат
Итого по	разделу	2	2	4		
Раздел 5.	Высокомолекулярные соединения					
5.1	Пластмассы. Каучуки. Волокна	1	1	2	https://profspo.ru/cat alog/books/fpu-books	Контрольные вопросы Тестирование Контрольная работа Реферат
Итого по раз	вделу	1	1	2		
Раздел 6.	Химия и жизнь		<u> </u>			
6.1.	Химия и жизнь	1	1	2	https://profspo.ru/cat alog/books/fpu- <u>books</u>	Контрольные вопросы Тестирование

				Контрольная работа Реферат
Итого по разделу	1	2	1	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	18	18	32	
Дифференцированный зачет			4	
Итого		72		

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Обязательная литература:

1. Рудзитис Г.Е., Фельдман Ф.Г. /Химия: базовый уровень: учебник для образовательных организаций, реализующих образовательные программы среднего профессионального образования; 1-е издание Москва: Просвещение, 2024. — 336 с. — ISBN 978-5-09-107579-3. — Текст: электронный // Электронный ресурс цифровой образовательной среды СПО PROFобразование: [сайт]. — URL: https://profspo.ru/books/139416

Дополнительная литература:

1. Радецкий А.М. / Химия: базовый уровень: тренировочные проверочные работы: учебное пособие, разработанное в комплекте с учебником для образовательных организаций, реализующих образовательные программы среднего профессионального образования.

1-е издание; Москва: Просвещение, 2024.

Интернет-ресурсы:

- 1. Российская электронная школа https://resh.edu.ru/
- 2. Электронный ресурс PROFобразование https://profspo.ru/

6.1 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Реализация программы общеобразовательной учебной дисциплины «Химия» осуществляется в учебном кабинете математических и естественнонаучных дисциплин в котором есть возможность проводить занятия, групповые и индивидуальные консультации, текущий контроль и промежуточную аттестацию как в традиционной форме, так и с использованием интерактивных технологий и различных образовательных методик.

Перечень оборудования и объектов для проведения занятий:

Стол для преподавателя — 1 шт.; Стул для преподавателя — 1 шт.; Столы для студентов — 16 шт.; Стулья ученические — 32 шт. Доска классная — 1 шт.; Вешалки — 2 шт.; Шкаф для книг — 1 шт.; Имеются также учебные аудитории для самостоятельной работы, кабинеты для проведения практических занятий, оснащенные оборудованием техническими средствами обучения и материалами,

26

учитывающими требования ФГОС СОО и ФГОС СПО.

Помещения кабинетов удовлетворяют требованиям Санитарноэпидемиологических правил и нормативов (СанПиН 2.4.2 № 178-02) и оснащено оборудованием, в том числе специализированной учебной мебелью и средствами обучения, достаточными для выполнения требований к уровню подготовки обучающихся.

При проведении занятий используется электронный ресурс цифровой образовательной среды «PROFобразование» и электронные образовательные ресурсы Научной библиотеки ДГУ.

Доступ к контенту и сервисам на электронном ресурсе цифровой образовательной среды СПО PROFобразование предоставляется в соответствии с условиями подписки ДГУ через личный кабинет. Дисциплина реализуется в традиционном формате, с использованием интерактивных форм проведения учебных занятий, в синхронном и асинхронном режиме на образовательной платформе СПО

PROFобразование https://profspo.ru/.